PROGRAMME DE COLLES DE CHIMIE PC*1

SEMAINE N°10: 8 AU 13 DECEMBRE

COURS

REVISIONS PCSI: STEREOCHIMIE (CONFORMATION ET CONFIGURATION)

REVISIONS PCSI: S_N ET ELIMINATION SUR LES HALOGENOALCANES

CHAPITRE 3 : ORBITALES MOLECULAIRES DES MOLECULES POLYATOMIQUES

- I. Méthode des fragments
- II. Application aux molécules AH₂
 - II.1 Diagramme d'OM de BeH₂ linéaire
 - II.2 Diagramme d'OM de H₂O coudée
 - II.3 Corrélation entre géométries
- III. Application aux molécules AH₃
- IV. Étude de l'éthylène
 - IV.1 Diagramme d'OM de l'éthylène plan
 - IV.2 Géométrie de l'éthylène
 - IV.3 Système σ et système π
- V. Molécules planes conjuguées
 - V.1 Exemple du buta-1,3-diène
 - V.2 Décompte des électrons π
 - V.3 Stabilité d'un système π conjugué
 - V.4 Géométrie d'une molécule conjuguée
 - V.5 Conjugaison et effet bathochrome

CHAPITRE 1 : PROPRIETES ELECTRONIQUES DES MOLECULES

- I. Effets électroniques au sein d'une molécule
 - I.1 Définitions des effets
 - I.2 Effet inductif
 - I.3 Effet mésomère
 - I.4 Effet d'hyperconjugaison
 - I.5 Compétition entre effets inductif et mésomère
- II. Conséquences sur la distribution électronique au sein d'une espèce
 - II.1 Stabilisation intrinsèque d'espèces chargées
 - II.2 Acido-basicité (concepts thermodynamiques)
 - II.3 Nucléophilie et électrophilie (concepts cinétiques)
 - II.4 Nucléofugacité
- III. Solvants en chimie organique (rappels)
 - III.1 Définition et rôle(s)
 - III.2 Caractéristiques du solvant
 - III.3 Dissolution d'un composé
 - III.4 Choix du solvant
 - III.5 Miscibilité

- III.6 Constante de partage
- III.7 Amphiphilie
- III.8 Toxicité des solvants

CHAPITRE 2: REACTIVITE EN CHIMIE ORGANIQUE

- I. Évolution énergétique au cours d'une réaction chimique
 - I.1 Réaction élémentaire
 - I.2 Réaction complexe
 - I.3 Postulat de Hammond
- II. Réactions en chimie organique (rappels) Pas de question de cours sur ce paragraphe
 - II.1 Description d'une réaction en chimie organique
 - II.2 Mécanisme réactionnel
- III. Sélectivité en chimie organique
 - III.1 Sélectivité et spécificité Pas de question de cours sur ce paragraphe
 - III.2 Contrôles cinétique et thermodynamique
 - III.3 Justification d'une sélectivité selon la nature du contrôle
 - III.4 Les différents contrôles cinétiques
- IV. Approximation des orbitales frontalières
 - IV.1 Principe
 - IV.2 Électrophiles et nucléophiles
 - IV.3 Prévision de la réactivité sous contrôle orbitalaire
 - IV.4 Limites de validité de l'approximation des orbitales frontalières
 - IV.5 Contrôle de charge, contrôle orbitalaire et contrôle stérique

TRAVAUX PRATIQUES

Montage à reflux (Fiche 15)

Extraction liquide-liquide (Fiche 19)

EXERCICES

Structure de la matière : chapitres 1 à 3

- → Pas d'exercice mettant en jeu les expressions analytiques des OA
- → Chapitre 1 : privilégier des exercices autour des configurations électroniques et du tableau périodique
- → Chapitre 2: seules constructions de diagramme *ex nihilo* autorisées: A₂ ou AB (en négligeant les interactions s-p); AH (sans interaction à 3 OA). Pour étudier d'autres cas, on donnera le diagramme déjà ou en partie construit
- → Chapitre 3: seule construction de diagramme complet *ex nihilo* autorisée: BeH₂ linéaire (traité en cours) ou équivalent; Pour étudier d'autres cas, on donnera le diagramme déjà ou en partie construit; dans tous les cas la fragmentation et les éléments de symétrie pertinents sont donnés; rien d'exigible sur une interaction à trois orbitales.

Chimie organique: chapitre 1

Révisions PCSI: stéréochimie (conformation et configuration) - S_N et élimination sur les halogénoalcanes

→ Un exercice obligatoire sur ce thème si pas abordé en question de cours

Rémi Le Roux